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The present work investigates the developing fluid flow and heat transfer through a wavy microchannel with
numerical methods. Governing equations including continuity, momentum and energy with the velocity slip
and temperature jump conditions at the solid walls are discretized using the finite-volume method and
solved by SIMPLE algorithm in curvilinear coordinate. The effects of creep flow and viscous dissipation are
assumed. The numerical results are obtained for various Knudsen numbers. The results show that Knudsen
number has declining effect on both the Cf.Re and Nusselt number on the undeveloped fluid flow. Significant
viscous dissipation effects have been observed for large Knudsen number. Also, viscous dissipation causes a
singular point in Nusselt profiles.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The study of fluid behavior in devices with micro-scale geometries
has received many interests because of its extensive applications in
micro-electro-mechanical-systems (MEMS), microelectronics cool-
ing, micro-scale heat exchangers, reactors, power systems, drug
delivery and biotechnical analyses.

A typical geometry of the flow passage that is used for enhancing
the rate of heat and mass transfer is wavy wall channel. However,
there are a few experimental and numerical investigations available
to give a clear understanding of convective heat transfer rates and
hydrodynamic characteristics of gaseous flows in the slip flow regime
through wavy microchannels. Therefore, an accurate and efficient
analysis of hydrodynamic and thermal behavior of gaseous flows in
wavy microchannels seems necessary.

One of the important challenges associated with the computa-
tional analysis of micro-scale gaseous flows originates from the fact
that the flow physics tend to get changed altogether, as one reduces
the length scales from the macro domain to the micro domain. Due to
the reduced length scale of micro-scale devices, the transfer lengths
are short and the areas are small, but high surface-to-volume ratios
and tiny volumes dominate everything and cause different behaviors
in comparisonwithmacro-scale channels. The rarefaction effect is one
of the important effects in micro-scale geometries. The Knudsen
number is a measure of the degree of rarefaction, which is defined as
the ratio of the mean free path to the appropriate macroscopic length
scale of the flow. As the value of Knudsen number increases,

rarefaction effects become more important and thus pressure drop,
shear stress, heat flux, and corresponding mass flow rate cannot be
predicted from flow and heat transfer based on the continuum
hypothesis. For Knudsen numbers in the range 10−3≤Kn≤10−1,
molecular collisions with the walls dominate over intermolecular
collisions. This thin layer is called the Knudsen layer and the flow
regime in this range of Knudsen numbers is known as slip-flow
regime. In slip-flow regime the standard Navier–Stokes and energy
equations can still be used with modifications to the boundary
conditions allowing for velocity slip and temperature jump at the
walls [1–3].

In the past decade, considerable efforts have been devoted to
analyze fluid flow and heat transfer in wavy channel and micro-
channel. Wang et al. [4] numerically studied forced convection in a
symmetric wavy wall macrochannel. They reported the effects of the
wavy geometry, Reynolds number and Prandtl number on the skin-
friction and Nusselt number. O'Brien and Sparrow [5] studied the heat
transfer characteristics in the fully developed region of a periodic
channel in the Reynolds number range of Re=1500 to Re=25000. A
level of heat transfer enhancement by about a factor of 2.5 over a
conventional straight channel was observed, resulting from a highly
complex flow pattern including a strong forward flow and an
oppositely directed recalculating flow.

Arkilic et al. [6] investigated helium flow throughmicrochannels. It
is found that the pressure drop over the channel length was less than
the continuum flow results. The friction coefficient was only about
40% of the theoretical values. Beskok et al. [7] studied the rarefaction
and compressibility effects in gas microflows in the slip flow regime
and for the Knudsen number below 0.3. Their formulation is based on
the classical Maxwell/Smoluchowski boundary conditions that allow
partial slip at the wall. It was shown that rarefaction negates
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compressibility. They also suggested specific pressure distribution
and mass flow rate measurements in microchannels of various cross
sections. Kuddusi et al. [8] studied the thermal and hydrodynamic
characters of a hydrodynamically developed and thermally develop-
ing flow in trapezoidal silicon microchannels. It was found that the
friction factor decreases if rarefaction and/or aspect ratio increase.

Their work also showed that at low rarefactions the very high heat
transfer rate at the entrance diminishes rapidly as the thermally
developing flow approaches fully developed flow. Chen et al. [9]
investigated themixing characteristics of flow throughmicrochannels
with wavy surfaces. However, they modeled the wavy surface as a
series of rectangular steps which seems to cause computational errors
at boundary especially in micro-scale geometry. Also their working
fluid was liquid and they imposed no-slip boundary conditions at the
microchannel wall surface.

The review of the previous works showed that numerous studies
were conducted on wavy channel in macro-scale. However, according
to the authors' knowledge, there is no study of hydrodynamic and
thermal characteristics of fluid flow in wavy microchannels with slip
boundary conditions. The present investigation is devoted to study
the developing fluid flow and heat transfer through a wavy
microchannel with the velocity slip and temperature jump conditions
at the solid walls.

2. Physical model and governing equations

Let us consider a rarefied gas through a symmetric wavy
microchannel. The physical domain and coordinates under consider-
ation are illustrated in Fig. 1. The mathematical non-dimensional
expression of wavy wall is given as

yw;A xð Þ = 0:5 + a 1− sin 2π
x
λ
−0:125

� �� �� �

Fluid flow and heat transfer are supposed to be steady, two-
dimensional, laminar and incompressible. The channel walls are
assumed to extend to infinity in the z-direction (i.e., perpendicular to
the plane). Physical properties are assumed to be constant. The
present work is concernedwith both thermally and hydrodynamically
developing flow cases. In this study, the usual continuum approach is
coupled with twomain characteristics of the micro-scale phenomena,
the velocity slip and the temperature jump. A general non-orthogonal
curvilinear coordinate framework with (ξ,η) as independent variables
is used to formulate the problem. The non-dimensional governing
equations can be written as:
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Energy:
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Nomenclature

a amplitude of the wave (m)
k thermal conductivity of air (W/m K)
h local heat transfer coefficient (W/m2.K)
J Jacobian of the coordinate transformation
p dimensionless pressure
Re Reynolds number (Re=ρui⁎L*/μ)
Pr Prandtl number (Pr=ν/α)
Nu local Nusselt number
Nu∞ fully developed Nusselt number
Kn Knudsen number
Ma Mach number
Pe Peclet number
Ec Eckert number
Cf skin-friction coefficient
cp specific heat (J/kg K)
n dimensionless normal direction to the wall
s dimensionless tangential direction to the wall
q11,q22,q12 grid parameters
R gas constant (J/kg K)
T temperature (K)
q″ heat flux
u dimensionless velocity component in x-direction
v dimensionless velocity component in y-direction
L* channel inlet width
x dimensionless horizontal coordinate
y dimensionless vertical coordinate

Greek symbols
α thermal diffusivity(m2/s)
λ dimensionless surface wavelength (m)
ρ density of fluid (kg/m3)
μ dynamic viscosity (kg/m s)
γ ratio of specific heats (cp/cv)
λ molecular mean free path (m)
ν kinematic viscosity(m2/s)
σT energy accommodation coefficient
σν momentum accommodation coefficient
θ dimensionless temperature
ξ curvilinear horizontal coordinate
η curvilinear vertical coordinate
τ shear stress

Subscripts
ave mean value
w surface conditions
i inlet conditions
s fluid property near the wall

Superscripts
C contravariant velocities
tang tangential direction
* returns to dimensional parameters
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where:

VC = −uyξ + vxξ ;U
C = uyη−vxη ; J = xξyη−xηyξ ;

q11 =
1
J

y2η + x2η
� �

;q12 =
−1
J

xξxη + yξyη
� �
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� �
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� �2

+ −uξxη + uηxξ + vξyη−vηyξ
� �2g

where u, v are the velocity components andUc and Vc are the velocities
in ξ,η , respectively and Φ represents the dissipation function stems
from viscous stresses. The employed dimensionless variables are
defined as follows:

x =
x*
L*

;y =
y*
L*

;p =
p*

ρui*
2 ;u =

u*
ui*

;v =
v*
ui*

;Rei =
ρui*L*

μ
;

Pei = ReiPr =
ui*L*
α

;θ =
T−Ti
Tw−Ti

:

3. Slip flow effects and boundary conditions

When gas flows in conduits with micron scale dimensions or in
low pressures conditions, a sublayer starts growing. This sublayer is
on the order of one mean free path, known as the Knudsen layer,
begins to become dominant between the bulk of the fluid and the wall
surface. However this sublayer is small in comparison with the
microchannel height for Kn≤0.1 and can be ignored by extrapolating
the bulk gas flow towards the walls. This causes a finite velocity slip
value at the wall, and a nonzero difference between temperature of
solid boundaries and the adjacent fluid. It means a slip flow and a
temperature jump will be present at solid boundaries. This flow
regime is known as the slip flow regime. In this flow regime, the
Navier–Stokes equations are still valid together with the modified
boundary conditions at the wall.

In order to calculate the slip velocity at wall under rarified
condition, the Maxwell slip condition has been widely used. Maxwell
supposed on a control surface, s, at a distance λ/2, half of the
molecules passing through s are reflected from the wall, the other half
of the molecules comes from one mean free path away from the
surface with tangential velocity uλ. On the assumption that a fraction
σv of the molecules are reflected diffusively at the walls and the
remaining (1−σv) of the molecules are reflected specularly, Maxwell
obtained the following expression by using Taylor expansion for uλ
about the tangential slip velocity of the gas on this surface namely us.

Also von-Smoluchowski's temperature jump boundary conditions
that is a derivation based on the kinetic theory of gases are used, [10–
12]:

Us =
2−σv

σv
Kn i

∂Us

∂n j
w
+

3
2π

1−γð Þ
γ

Kn2
i Rei
Eci

∂θ
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θs = 1− 2−σT

σT

� �
2γ

γ + 1

� �
Kni

Pr i

∂θ
∂n j

w

ð5Þ

where γ and σ represent the specific heat ratio and accommodation
coefficient, respectively. The second term in the slip velocity
associates with the thermal creep. The thermal creep (transpiration)
phenomenon is a rarefaction effect. It shows that even without any
pressure gradient, the flow can be caused due to tangential
temperature gradient, specifically from colder region toward warmer
region. [10–12]. Here, Eci means the Eckert number in inlet which is
defined as

Eci =
ui*

2

cp Tw−Tð Þi
ð6Þ

where Pr and Kn mean the Prandtl number and Knudsen number,
respectively.

In this work we concentrate on incompressible flow. The flow can
be considered incompressible forMach number lower than 0.3 [10]. In
order to keep the Mach number below 0.3, we should determine the
upper limit of Re. The following equation relating Mach number,
Knudsen number and Reynolds number:

Re =
Ma
Kn

ffiffiffiffiffiffiffi
πγ
2

r
ð7Þ

By referring to Eq. (7) and the range of Knudsen number
considered in this work, the flow will be incompressible with
Re=2. Hence, all subsequent results presented were obtained using
this Reynolds number.

Moreover, the other boundary conditions should be defined.
Uniform inlet velocity and temperature distributions are specified as

u = 1 ;v = 0 ;θ = 0 ð8Þ

In the outlet, fully developed boundary conditions are assumed as

∂u
∂x =

∂v
∂x =

∂θ
∂x = 0 ð9Þ

Fig. 1. The physical domain of wavy microchannel.
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4. Calculations for Nusselt number and Cf.Re

Friction coefficient for a hydrodynamically–thermally developing
flow in the micro channel is calculated by,

Cf =
τ*w xð Þ

ρ u*ave xð Þ
� �2 ð10Þ

where u*ave(x) represents the average velocity and τ*W(x) is the wall
shear stress. Eq. (10) can be expressed in non-dimensional form as

CfRe =
4 y xð Þð Þ2

∫u x; yð Þdy
� �2

∂utang xð Þ
∂n ð11Þ

The local Nusselt number is calculated by

Nu =
hL*
k

ð12Þ

Eq(12) can be expressed in non-dimensional form as

Nu =
1

θave xð Þ−1
∂θ xð Þ
∂n j

w
ð13Þ

5. Validation of numerical code

In Fig. 2, a comparison with the previously published result of
Wang and Chen [4] is done to validate the numerical code and non-
orthogonal grid discretization scheme of the present study. Their
model is analogous to the present model but with the water as
working fluid and macro scale channel. There is no slip effect with
fixing Knudsen number at zero.

6. Grid dependence

The accuracy of the numerical solutions and the time required to
reach a steady-state solution are dependent on the grid resolution. To
clarify effect of mesh refinement on numerical solution, three meshes
are used in numerical analysis: 550×65, 600×75 and 650×85. As it
shows in Fig. 3, increasing the grid numbers does not significantly
change in the surface Nusselt number. For Kn=0.075 at Re=2,
600×75 grid seems to be optimum in accuracy and run-time.
Furthermore, similar type of grid independence study is carried out
for the other Knudsen and Re numbers (not reported here) and
optimum meshes are chosen.

7. Solution procedure

The governing equations with appropriate boundary conditions
are solved by employing the SIMPLE algorithm [13], a finite-volume
method, in non-orthogonal curvilinear coordinate framework. A fully
implicit scheme is used for the temporal terms and the HYBRID
differencing [14] is applied for the approximation of the convective
terms. The Poisson equations is solved for (x, y) to find grid points [15]
and are distributed in a non-uniform manner with higher concentra-
tion of grids close to the curvy walls and normal to all walls, as shown
in Fig. 1. In this work, a full-staggered grid is used. The discrete form of
themomentum and energy equations and all the boundary conditions
are obtained by applying a second order central difference scheme.

One convergence criteria is a mass flux residual less than 10−8 for
each control volume. Another criteria is (|φi+1−φi|)/|φi+1|≤10−10

where φ represents any dependent variable, namely u, v and θ, and i is
the number of iteration.

8. Results and discussion

In order to have a physical point of view of the problem and for the
purpose of calculating the fluid flow and heat transfer characteristics,
numerical calculations are carried out, for different values Knudsen
number and various amplitude values. Because of the symmetrical
geometry, in this work, only one half of microchannel is numerically
solved. Therefore, the time of computation work reduces consider-
ably. However, the results depicted for the whole microchannel. The
tangential momentum accommodation coefficient σv and the thermal
accommodation coefficient σT are set at 0.9. In this work, the Eckert
Number is not constant. With defined Re and Knudsen number and
using Eq. (7) the Mach number is calculated. Now with the calculated
Mach number and using Eq. (14), one can compute the inlet velocity.
The obtained inlet velocity and Eq. (6) result in the Eckert number.

ui* = Ma
ffiffiffiffiffiffiffiffiffiffiffi
γRTi

p
ð14Þ

Fig. 2. Validation of the numerical code with available results.

Fig. 3. Numerical results of local Nusselt number along the wavy microchannel with
Kn=0.075 at Re=2.
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Furthermore, the boundaries are maintained at temperature
Tw=70 °C and the uniform inlet temperature is considered
Ti=25 °C. The results are obtained for the specific heat ratio γ=1.4,
Pr=0.7 and λ=2. The data on Table 1 shows the five studied
Knudsen numbers and corresponding Mach number and Eckert
number.

8.1. The flow field

Fig. 4 shows the effect of Knudsen number on slip velocity for
hydrodynamically/thermally developing flow in the wavy micro-
channel. By increasing the Knudsen number, the channel dimensions
decrease and approach to molecular dimensions. By decreasing the
microchannel dimensions, the MFP (mean free path) becomes more
comparable with the microchannel's characteristic length in size. This
means that the thickness of Knudsen layer increases that causes an
increase in the slip velocity. Moreover, in the convergent region, the
cross section area decreases that causes the acceleration of the fluid
flow. So the average velocity increases that contributes to a rapid raise
in the slip velocity in this region. In the divergent area, contrary to the
convergent area, the cross section area increases. This increase causes
a rapid decline in the slip velocity as it can be observed.

Fig. 5 illustrates the velocity profiles. As it can be observed by
increasing the rarefaction, the slip flow is intensified and the slip
velocity value becomes greater. The data in this figure illustrates that
as slip velocity increases, the velocity profile gets flattered that leads
to the reduction in wall velocity gradients.

Fig. 6 compares the velocity profile in different Knudsen numbers
and in different cross sections. It schematically shows when
rarefaction increases, the slip velocity values become greater. In
addition, in each Knudsen number as the fluid approached throttle
regions, the slip velocity becomes more considerable.

Fig. 7 depicts Cf.Re versus Knudsen number for hydrodynamically/
thermally developing flow in thewavymicrochannel. It is evident that
there is high friction at the entrance region due to presence of high
velocity gradients. However, it rapidly decreases as the flow develops.

Moreover, rarefaction has a decreasing effect on the friction factor. For
instance, by variation of Knudsen number from 0.01 to 0.1, the Cf.Re at
the end of micro channels decreases 37%. This effect can be explained
physically. By increasing the Knudsen number, as already stated, the
interaction of gaseous molecules with the adjacent walls decreases.
Therefore, the momentum exchange between the fluid and adjacent
walls reduces and this means Cf.Re declines. Furthermore, as
rarefaction increases, the slip velocity increases which results in a
flatter velocity profile that reduces wall velocity gradients and
contributes to the decrease in Cf.Re. However, this effect can be
interpreted mathematically. Eq. (11) shows that Cf.Re depends on the

Table 1
Numerical values for Ec as a function of Kn with Re=2.

Kn=0.01 Kn=0.025 Kn=0.05 Kn=0.075 Kn=0.1

Ma 1.34×10−2 3.37×10−2 6.74×10−2 0.1 0.13
Ec 4.82×10−4 3.01×10−3 1.21×10−2 2.7×10−2 4.82×10−2

Fig. 4. Variation of slip velocity along the wavy microchannel with Knudsen number
Re=2 and a=2.

Fig. 5. Variation of velocity profile at x=0.75λ the wavy microchannel with Knudsen at
Re=2 and a=2.

Fig. 6. Schematic illustration of Knudsen effect on velocity profile at Re=2 and a=2.
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average velocity and the gradient of tangential velocity. As Knudsen
increases, due to a fixed Re and Eq. (7), the Mach number increases
that results in greater average velocity. In addition, in according to
Fig. 5, larger Knudsen number decreases the slop of velocity near the
wall and this means having lesser tangential velocity gradient.
Therefore, in according to the previous explanation, the larger
Knudsen number causes the lesser Cf.Re.

As it can be observed in Fig. 7, when the fluid flows in the divergent
region, Cf.Re experiences a rapid decrease in the microchannel. To
explain this phenomenon, one should refer to the definition of Cf.Re in
Eq. (11). In this equation, there are three different parameters that
should be considered separately. The first parameter is the gradient of
tangential velocity, ∂utang(x)/∂n that reduces in the divergent area
because of reduction of the average velocity through this area. The
second term is the inverse of square of average velocity that decreases
in the divergent area. The third term is the square of channel width
cross four, 4y(x)2 that increases through the divergent area. The
behavior of Cf.Re is determined by summing of these three terms. In
this case, intensity of variation of ∂utang(x)/∂n is more significant and
determines the behavior of Cf.Re.

8.2. The temperature field

Fig. 8 displays the isothermal line corresponds to the non-
dimensional temperature of unity for five different values of Knudsen
number. Two different thermal regions can be distinguished inside
the channel, namely the region of θb1 and θN1. In the inlet of channel,
the non-dimensional temperature is less than unity. When the fluid
flows through the channel, its temperature increases due to the heat
supplied by thewall into the fluid. In the region close to θ=1, the heat
supplied by the wall into the fluid is balanced by the internal heat
generation due to the viscous heating. In the region of θN1, the
internally generated heat by the viscous dissipation overcomes the
wall heat. As it can be observed the effect of viscous dissipation is an
important effect in microchannels. By increasing Knudsen number,
this effect can be more important.

The effect of Knudsen number on temperature jump is depicted in
Fig. 9. As shown, larger Knudsen numbers leads to higher temperature
jumps. By decreasing of the channel dimensions, the thickness of the
Knudsen layer increases that brings about further temperature jumps.
This increase has two different directions though. In the inlet of
microchannel, the fluid temperature near the wall is less than the wall

temperature. In this region, when the temperature jump is raised, the
fluid temperature near the wall tends to become less than the wall
temperature (i.e., towards the inlet temperature). In the outlet of
microchannel, the fluid temperature near the wall is more than the
wall temperature. In this region, the fluid temperature near the wall
tends to become higher than the wall temperature (i.e., contrary to
the inlet temperature) when the temperature jump is raised by
increasing Knudsen number. It is further noticed that with an increase
in Knudsen number, the effect of viscous dissipation becomes more
important. For instance, in Kn=0.1, the fully developed non-
dimensional fluid temperature near the wall is larger than 1.01. In
addition, it is found that the fluid temperature near the wall increases
along the microchannel generally. However this effect is gradually
diminishing as the fluid flow approaches the developed region.

Fig. 10 illustrates the variation of average temperature versus the
length of microchannel for different Knudsen numbers. In the
entrance of microchannel, by increasing rarefaction, the average

Fig. 7. Variation of Cf.Re along the wavy microchannel with Knudsen at Re=2 and
a=2.

Fig. 8. Isothermal line corresponds to non-dimensional temperature unity along the
wavy microchannel with Knudsen at Re=2 and a=2.

Fig. 9. Variation of slip temperature with Knudsen number along the wavy
microchannel at Re=2 and a=2.
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temperature decreases. When Knudsen number increases, the inlet
velocity increases. As the fluid enters with greater momentum, it loses
its chance to exchange energy with the adjacent walls. It leads to
decrease in the average temperature. However, when the fluid flows
along the microchannel, the effect of viscous dissipation becomes
more important. Viscous dissipation effect is closely related to the
fluid velocity. By increasing Knudsen number, the fluid velocity
increases and causesmore viscous dissipation effect and consequently
higher average temperature. It can be also noticed that by increasing
Knudsen number, the axial distance from the channel entrance to the
fully developed region, gets longer.

Fig. 11 and Fig. 12 present temperature distributions in two
different cross sections at x=0.75λ, 2.25λ. In Fig. 11, all profiles are
plotted in the region θb1. As expected with larger Knudsen number,
higher temperature jump at the wall is present. In according to the
definition, a unity non-dimensional temperature means the temper-
ature of the fluid equals wall temperature. Intensification of Knudsen
number causes the center non-dimensional temperature to approach

the inlet non-dimensional temperature more. Also in this region, all
tangential temperature gradients are negative.

In Fig. 12, profiles correspond to Kn=0.025, 0.05, 0.075 and 0.1 are
plotted in the region θN1.

In this region, the fluid temperature near the wall tends to become
higher than the wall temperature (i.e., contrary to the inlet
temperature) when the temperature jump is raised by increasing
Knudsen number. Also in this region, all tangential temperature
gradients are positive and are intensified by increasing Knudsen
number.

Fig. 13 presents the variation of local Nusselt number with the
microchannel length using different Knudsen numbers. As expected,
very high heat transfer rates are experienced in the entrance region of
the microchannel due to high temperature gradient. As expected also,
high heat transfer rates diminish rapidly as the thermally developing
flow approaches the fully developed flow.

As it can be observed, there is a singular point for each Knudsen
number in Nusselt profile. The physical reason of the singularity is the

Fig. 10. Variation of average temperature with Knudsen number along the wavy
microchannel with Re=2 and a=2.

Fig. 11. Variation of temperature profile at x=0.75λ in the wavy microchannel with
Knudsen at Re=2 and a=2.

Fig. 12. Variation of temperature profile at x=2.25λ in the wavy microchannel with
Knudsen at Re=2 and a=2.

Fig. 13. Variation of local Nusselt along the wavy microchannel with Knudsen at Re=2
and a=2.
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presence of an axial position where the difference between the
average temperature and wall temperature vanishes. Actually, in the
singular point, the heat supplied by the wall into the fluid is balanced
by the internal heat generation due to the viscous heating. With the
increasing Knudsen number, this critical point is reached at an earlier
point from the entrance. This displacement is originated by the
viscous dissipation effect. As it can be noticed from Fig. 8, the effect of
viscous dissipation becomes more significant and the region θN1
grows by increasing Knudsen number.

In the region θb1, the average non-dimensional temperature is
less than the wall temperature. Also according to Fig. 11, the
tangential temperature gradient is negative in this region. Therefore,
Nusselt number is positive in accord with Eq. (13). The average non-
dimensional temperature is more than the wall temperature and the
tangential temperature gradient is positive in the region θN1. So,
Nusselt number is positive in this region for each Knudsen number.
The trend of Nusselt profile related to Kn=0.01 is different though. As
it can be seen, Nusselt number is partially negative in region of θb1.
This can be explained by referring to Fig. 8. As it can be noticed, there
are some small regions that the fluid temperature near the wall is
more than the wall temperature in θb1. So the average temperature
and tangential temperature gradient are affected by these discrete
regions.

Moreover, Nusselt number in the microchannel decreases as the
rarefaction increases. For instance, by variation of Knudsen number
from 0.01 to 0.1, the Nusselt number at the end of micro channels
decreases 71%. As already sated, when rarefaction increases the
temperature jump as well as slip velocity is intensified. Here, as
temperature jump intensifies, the absolute difference between the
average temperature and wall temperature becomes more. The
temperature jump acts like a thermal contact resistance between
the wall and gas. However, the slip velocity tends to decrease this
thermal resistance. In other words, the effects of the temperature
jump and slip velocity are opposite on Nusselt number. The slip
velocity acts to increase the Nusselt number by increasing the fluid
velocity near the wall. Contrary to the slip velocity, the temperature
jump decreases the Nusselt number by increasing the absolute
difference of the wall temperature and mean gas temperature. In
this work, with σv=0.9, σT=0.9 and the specified geometry, the
effect of temperature jump in Nusselt number is more important.

In addition, due to the increasing of the average velocity and
especially slip velocity in the convergent region, there is a jump in the
local Nusselt in this region and this amplifies the heat transfer
coefficient. There is the same phenomenon in macro scale channel
because of larger average velocity in converging region. As the fluid
flow approaches the developed region, local Nusselt number
converges to a constant value (i.e., there is no change in local Nusselt).

9. Conclusion

Developing fluid flow and heat transfer through a wavy micro-
channel have been studied by taking the effect of viscous dissipation

into account. The present work investigates the effects of Knudsen
number and geometry on thermal and hydrodynamic characteristics
of flow in the wavy microchannel at constant Reynolds number.

It is found that the Nusselt number and Cf.Re decrease with Knudsen
number. It is also found, in the divergent parts, Nusselt number
experiences a rapid decrease. In addition, the very high heat transfer
rate and Cf.Re at the entrance declines rapidly as the thermally-
hydraulicallydevelopingflowapproaches fullydevelopedflow.Moreover,
the model successfully predicts the growth of temperature jump and slip
velocity with Knudsen number at the solid walls.

Furthermore, it is observed that the effect of viscous dissipation
has a considerable effect in microchannels. This effect can be more
significant by increasing Knudsen number. Also, it leads a singular
point in Nusselt profiles.
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