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An analytical method is proposed to investigate the combined heat
and mass transfer phenomena taking place in industrial dryers. The
unsteady heat and mass transfer equations are solved analytically to
obtain the distributions of the fluid and solid temperatures and the
solid humidity. At the fluid and solid interface, due to the temperature
and concentration gradients in the fluid and in the solid, the govern-
ing equations are coupled. One of the principal aims of the current re-
search is to propose an analytical method for estimation of the
required time for drying of a solid material. For the case of e = 0.03
and δ = 0.09, the results show that the solid is dried in approximately
25 min while for the case of e = 0.5 and δ = 1.5, the required time
of drying is almost 600 min.
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1. INTRODUCTION

Drying is a complicated process involving simultaneous heat, mass, and momentum
transfer phenomena and effective models are necessary for process design, optimiza-
tion, energy integration, and control. Drying commonly describes the process of ther-
mal removing volatile substances (moisture) to yield a solid product. Utilization of a
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high amount of energy in the drying industry makes drying one of the most energy-
intensive operations with a great industrial significance. Therefore, performing of a
drying process in an optimal way is essentially crucial.

Drying is likely the oldest and most common chemical engineering unit operations
(Wiliams-Gardner, 1971). Because the weight and the volume of a product become
less in its dried form, packaging, handling, and transportation of a dry product are
easier and cheaper after drying. Food products are dried for an improved mixing,
milling or segregation operation. No doubt that synthetic drug has played a vital role
in the enhancement of human living standards. The quality of the herbs depends very
much on the contents of active ingredients. It is known that heating or thermal dry-
ing, if not carried out properly, can cause a significant loss of the active ingredients.
In the preparation of nanoparticles by the liquid-phase method, drying is an indispen-
sable unit operation. The anatomical structure of wood limits how rapidly water can
move through and out of wood (Mujumdar, 1995; van Arsdel et al., 1973; Ashworth,
1977). The fact that tens of thousands of products need to be dried in over a hundred
of variants of dryers provides major and ample opportunities for innovation.

The transfer of heat and moisture on solid materials was a topic of a considerable
research interest in the recent past. There are a number of efforts to develop coupled
heat and mass transfer models that are suitable for the design. Many researchers in-
vestigated the simultaneous heat and mass transfer, theoretically (Raisul Islam et al.,
2006; Papia et al., 2007; Arnaud and Fohr, 1988; Johansson et al., 1997; Kulasiri and
Woodhead, 2005), numerically (Talukadr et al., 2008; Le Palec, 1992; Ibrahim and
Vinnicombe, 1993), and experimentally (Iskra and Siminson, 2007; Li et al., 2006;
Olutimayin and Siminson, 2005). Luikov (1966) showed the importance of the tem-
perature gradient for moisture migration in capillary-porous bodies. He developed a
system of coupled PDEs using the thermodynamics of irreversible processes. Olbrich
and Wild (1969) provided a solution to the diffusion equation in laminar flow for
several falling film geometries. The solution, in the form of a series of eigenfunc-
tions, includes ten eigenvalues and coefficients. Thomas et al. (1980) used the cou-
pled two-dimensional PDEs based on Luikov’s theory to develop a fully nonlinear
finite element formulation to solve a problem of kiln drying timber having a cross
section of 200 mm × 50 mm. Then they simplified the numerical problem using a
linear finite element formulation for the same cross section of timber and concluded
that the use of a fully nonlinear formulation was not justified because there was no
difference in results from both formulations. Grossman (1983) described a theoretical
analysis of the combined heat and mass transfer process taking place in the absorp-
tion of a gas or vapor into a laminar liquid film. Killion and Garimella (2001) pro-
vided a comprehensive review of the significant efforts that researchers have made to
model the coupled heat and mass transfer phenomena mathematically.

The purpose of the present study is to develop an analytical model of the com-
bined heat and mass transfer process taking place in industrial dryers. Equations are
coupled at the interfacial boundary condition between the solid and the fluid. By
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solving the mentioned equations, the solid humidity distribution and the fluid/solid
temperature variations can be found.

2. PROBLEM DESCRIPTION

The physical configuration of the problem under investigation is presented sche-
matically in Fig. 1. This figure shows that a solid slab is horizontally located in a
long space in the x direction. The solid is assumed to be wet and cold. It is also sup-
posed that space is occupied by a stationary hot air. Because the space is long in the
x direction, the gradient of variations can be neglected in this direction. So, the prob-
lem is studied only in the y direction.

At t = 0, the air temperature, the solid temperature, and the solid humidity are
shown by Toa, Tos, and ωoa, respectively. Because the initial air temperature (Toa) is
greater than the initial solid temperature (Tos), heat transfer occurs from the fluid to
the solid body. As time increases, due to heat transfer from the fluid to the solid, the
solid temperature increases. During this process, both the solid humidity and the fluid
temperature decrease.

3. GOVERNING EQUATIONS

The model consists of a set of equations that describe the heat and mass transfer
phenomena within fluid and solid materials. The equations of the model are solved
theoretically to calculate the fluid/solid temperature distribution and the solid mass
distributions. The list of the assumptions that are used in developing the mathematical
model is as follows:

(i) The thermophysical properties of the fluid and the solid are assumed to be con-
stant.

(ii) Heat and mass transfer are considered to be unsteady and one-dimensional in the
y direction as mentioned before.

(iii) There are no natural convection effects in the fluid due to temperature or concen-
tration gradients.

(iv) Diffusion thermal effects are negligible.

Fig. 1. Schematic of the physical domain.
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(v) The concentration is assumed to be very high so that the interfacial temperature,
Tint, and the solid moisture at the interface, ωint, can be related through the
interfacial saturated pressure, Psat, according to the following equation at all
times:

ωint = 0.622 
Psat

P − Psat
 ,

(1) 

where P is the total vapor pressure and Psat is calculated from the Bertrand formula
(Bruhat, 1968):

Psat = 10(17.433 − 2795 ⁄ Tint − 3.8681 log 10(Tint)) . (2)

For analytical solution, the above curve is estimated by a linear relation that can
be written as:

ωint − ωe  =  
ωos − ωe

Te − Tos
 (Tint − Tos) ,

(3)

where ωe is the equilibrium humidity of the solid at the temperature Tos and Te is the
equilibrium temperature of the solid at the humidity ωos.

3.1. Energy Equations

As mentioned before, the fluid is stationary and hot. Unsteady and one-dimensional
form of the heat equation has, therefore, the following form:

∂Ta

∂t
  =  αa 

∂2Ta

∂y2  . (4)

Unsteady and one-dimensional form of heat conduction through the solid is ex-
pressed as:

∂Ts

∂t
  =  αs 

∂2Ts

∂y2  ,
(5)

where the thermal diffusion term in the x direction has been neglected with respect to
that in the y direction.

3.2. Penetration Model

Diffusion into solid materials during drying process is a complex process that may
involve molecular diffusion, capillary flow, Knudsen flow, hydrodynamic flow or sur-
face diffusion. If all these phenomena are combined into one, the effective diffusivity
can be defined from Fick’s second law:

∂ω
∂t

  =  D ∂
2ω

∂y2  , (6)

where diffusion in the x direction has been neglected with respect to that in the y di-
rection. D, ω, and t are the effective diffusivity, the material moisture content, and
time, respectively.
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3.3. Boundary Conditions

This set of governing equations has been solved subject to the following boundary
conditions:

Line y1 = 0 is a symmetry line and line y2 = 0 is an adiabatic line, therefore:

At the interface, the temperatures of the solid and the air are equal so the equilib-
rium condition exists. It is assumed that the amount of heat that is exerted by air di-
vides into two parts. One of them heats the solid and the other evaporates moisture of
the solid. Also, it is assumed that the heat that is required to evaporate the solid hu-
midity is equal to the sensible heat transfer from air to the solid interface, therefore:

At the initial time, the boundary conditions are:

The governing equations will be non-dimensionalized by implementation of the fol-
lowing non-dimensional terms:

η1  =  
y1

e
 ,   η2  =  

y2

δ
 ,   τs  =  

tαs

e2  ,   τa  =  
tαa

δ2  .

Non-dimensional governing equations are found as:

Air non-dimensional energy equation:

∂θa

∂τ2
  =  

∂2θa

∂η2
2  . (14)

Solid non-dimensional energy equation:

∂θs

∂τ1
  =  

∂2θs

∂η1
2  . (15)
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Solid humidity non-dimensional equation:

∂ϖ
∂τ1

  =  1
Le

 
∂2ϖ
∂η1

2  , (16)

where Le is the Lewis number that is defined as Le = αs/D.
Also, the non-dimensional boundary conditions have the following form:
At η1 = η2 = 0

At the interface, i.e., η1 = η2 = 1

(θs)η1=1  =  (θa)η2=1 ,

(ϖ)η1=1  +  (θs)η2=1  =  1 ,

⎛
⎜
⎝

∂θa

∂η2

⎞
⎟
⎠η2=1

 = λ1 
⎛
⎜
⎝

∂ϖ
∂η1

⎞
⎟
⎠η1=1

 + λ2 
⎛
⎜
⎝

∂θs

∂η1

⎞
⎟
⎠η1=1

 ,

where η1 and η2 are determined as:

λ1 = 
δDρahfg(ωe − ωos

eka(Te − Tos)
 ,   λ2 = − δ

e
 
ks

ka
 .

At the initial time, i.e., τ1 = τ2 = 0, the non-dimensional boundary conditions are

(θa)(η2,τ2=0)  =  λ4 , (21)

(θs)(η1,τ1=0)  =  0 , (22)

(ϖ)(η1,τ1=0)  =  0 , (23)

where λ4 is determined as:

λ4 = 
(Toa − Tos)
(Te − Tos)

 .

The set of equations (14) through (16) will be solved analytically. With respect to
the interfacial boundary conditions, the above equations are coupled.

4. ANALYTICAL SOLUTION

By using the method of separating variables for Eq. (14), two ODEs are obtained.
Three boundary conditions are required for solving the ODEs. Because one of the
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three boundary conditions is coupled at the interface and it is not distinct clearly, the
solution of Eq. (14) is coupled with Eqs. (15) and (16).

By using the methods of separating variables and the Fourier series, solutions of
Eqs. (14)–(16) with the boundary condition (17), in the form of three infinite series,
have the following form:

where αn, βn, and γn are the eigenvalues.
If Eq. (26) is rewritten in the following form, it will satisfy Eq. (16) and the

boundary conditions (17) and (19), again. So, Eq. (26) is changed as:

ϖ = 1 – ∑  
 n=1

 ∞
Cn cos (√⎯⎯⎯Leγnη1) exp (−γn

2τ1) . (27)

Because Eqs. (24), (25), and (27) must be satisfied by the boundary conditions
(18) and (19) at any τ1 and τ2, it is obvious that for every n

βn  =  γn , (28)

αn  =  √⎯⎯⎯λ3  βn , (29)

where λ3 is determined as:

λ3 = 
⎛
⎜
⎝

αsδ2

αae
2

⎞
⎟
⎠
 . (30)

Also the boundary conditions (18)–(20) exert the following conditions:

Equations (31)–(33) are homogeneous for An, Bn, and Cn and have a unique solu-
tion only if the determinant equals zero, i.e., if

By solving Eq. (34), the eigenvalues βn are determined. Then the eigenvalues αn

and γn are found by using Eqs. (28) and (29).
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The Sturm-Liouville orthogonality condition and the boundary conditions (21)–(23)
are used to find An, Bn, and Cn.

Equations (24), (25), and (27) can be rewritten in the form of three infinite series
of eigenfunctions Fn, Gn, and Hn as

where

By substituting Eqs. (35), (36), and (37) into Eqs. (14), (15), and (16), respec-
tively, three following equations for the eigenfunctions Fn, Gn, and Hn are obtained:

By considering Eq. (38) for the eigenfunction Fn, multiplying it by another eigen-
function Fm and integrating over the range of η2 we have:

Similarly

By subtracting Eq. (42) from Eq. (41) and using the boundary condition (17), the
following equation is obtained:
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In the same manner, considering Eqs. (39) and (40) for the eigenfunctions Gn and
Hn, two following equations are obtained, respectively:

Equations (31), (32), and (33) can be rewritten in the following form:

By combining Eqs. (47) and (48), the following equation is obtained:

Similarly

By subtracting Eq. (50) from Eq. (49) and using Eq. (46), the following equation
is obtained:

By substituting Eqs. (43), (44), and (45) into Eq. (51), the following equation is
obtained:

By using the orthogonality condition, Eq. (52) can be written in the following
form:

At this point, we return to the boundary conditions (21) through (23) and using
Eqs. (35)–(37), the following equations are found:
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By integrating Eqs. (54), (55), and (56) over their specific range [i.e., the range of
η2 for Eq. (54) and the range of η1 for Eqs. (55) and (56)] and combining the ob-
tained equations, the following equation is obtained:

By combining Eqs. (53) and (57), the following equation is obtained:

Equation (58) provides one relation between An, Bn, and Cn; the two other relations
between them are available in Eqs. (31) and (32). Solution of Eqs. (31), (32), and
(58) for An, Bn, and Cn yields the following equations:

The analytical solution is now completed. As summary, the temperature distribution
of the air and the solid are obtained from Eqs. (24) and (25), respectively. The solid
humidity is calculated from Eq. (27). The eigenvalues βn are achieved by solving Eq.
(34). In addition, the coefficients An, Bn, and Cn are determined by Eqs. (59), (60),
and (61).
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5. RESULTS AND DISCUSSION

In order to have a physical point of view of the problem, the analytical solution
achieved in the previous sections is applied for typical values of the parameters: ka =
0.0263 [W⋅m–1⋅oC–1], ks = 0.166 [W⋅m–1 oC–1], αa = 0.2216 × 10–4 [m2⋅s–1], αs =
1.28 × 10–7 [m2⋅s–1], D = 0.256 × 10–4 [m2⋅s–1], Le = 0.005, Toa = 90oC (363.15 K),
Tos = 25oC (298.15 K), hfg = 2,442,300 [W⋅m–2⋅oC–1], and ρa = 1/0.87 [kg⋅m–3]. The
results are obtained for the first fifteen eigenvalues. Also the results are obtained for
various sets of the values of e and δ.

Figures 2, 3, and 4 illustrate that the variations of the air temperature with η2 as
time is variable for various sets of the values of e and δ. As it can be seen, by in-
creasing time, the air temperature converges into a final constant value. In addition,
by increasing the size of the system, the time required to converge into the final con-
stant temperature is increased. For instance, for the case of e = 0.03 and δ = 0.09,
the air temperature reaches its final constant value in approximately 20 min while for
the case of e = 0.05 and δ = 0.15, it takes almost 4000 min to reach its final con-
stant temperature.

Because the air temperature is larger than the solid temperature, the direction of
heat transfer is from the air to the solid. So the air temperature is decreased as time
increases. The slope of this decline is high for small values of η2. The line of η2 = 1
represents the temperature of the interface. By increasing time, due to the heat is ex-
erted by the air, the temperature of the interface is slightly increased.

Figures 5, 6, and 7 show the variations of the solid temperature as a function of
time for six different values of η1 and for various sets of the values of e and δ. As

Fig. 2. Variation of air temperature with time at various η2 at  e = 0.03 and
δ = 0.09.
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shown in these figures, the solid temperatures at different values of η1 become closer
and closer to each other and approach toward a final common value. In addition, by
increasing the size of the system, the time needed to approach toward the final com-
mon temperature is intensely increased. For example, in the case of e = 0.03 and δ
= 0.09, the solid temperature reaches its final constant value in approximately 50 min
while for the case of e = 0.05 and δ = 0.15, it takes almost 16,000 min to reach its
final constant temperature.

Fig. 3. Variation of air temperature with time at various η2 at  e = 0.1 and
δ = 0.3.

Fig. 4. Variation of air temperature with time at various η2 at  e = 0.5 and
δ = 1.5.
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At the top of the solid and near the interface (i.e., η1 = 1, 0.9, and 0.75), for
small values of time, the solid temperature is increased due to a high heat transfer
rate from the air at small values of time. The line of η1 = 1 represents the interface
temperature similar to the line of η2 = 1 in Figs. 2, 3, and 4. After that, the solid
temperature is slightly decreased to approach toward a final common temperature. At
the bottom of the solid (i.e., η1 = 0, 0.25, and 0.5), the solid temperature is slightly
increased toward the final common temperature.

Fig. 5. Variation of the solid temperature with time at various η1 at e = 0.03
and δ = 0.09.

Fig. 6. Variation of the solid temperature with time at various η1 at e = 0.1 and
δ = 0.3.
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Figures 8, 9, and 10 present the variations of the solid humidity as a function of
time for six different values of η1 and for various sets of values of e and δ. As it
can be seen, in each figure, the solid humidity at each level converges into a final
constant humidity. The time required to reach this final constant humidity increases
by increasing the size of the system. For example, for the case of e = 0.03 and δ =
0.09, the solid is dried in approximately 25 min while for the case of e = 0.5 and
δ = 1.5, the required time for drying is almost 600 min.

Fig. 7. Variation of the solid temperature with time at various η1 at e = 0.5 and
δ = 1.5.

Fig. 8. Variation of the solid humidity with time at various η1 at e = 0.03 and
δ = 0.09.
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In addition, due to heat transfer from the air to the solid, the solid humidity de-
creases by increasing time. Also, at each time, the solid humidity decreases by in-
creasing η1. So the minimum solid humidity is at the interface.

Fig. 9. Variation of the solid humidity with time at various η1 at e = 0.1 and
δ = 0.3.

Fig. 10. Variation of the solid humidity with time at various η1 at e = 0.5 and
δ = 1.5.
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6. CONCLUSIONS

Combined heat and mass transfer in industrial dryers is investigated analytically. At
the solid and fluid interface, due to temperature and concentration gradients in the
fluid and in the solid, heat and mass transfer exist between the solid and fluid phases.
Because of these interfacial gradients, the governing equations are coupled at the in-
terface. The unsteady heat and mass transfer equations are solved to obtain the distri-
butions of the fluid and solid temperatures and the solid humidity. The results are
obtained for various sets of values of e and δ.

The main results obtained can be summarized as follows:

1. By increasing time, the air and solid temperatures and the solid humidity con-
verge into a final constant value. Each profile has a specific final constant value.

2. By increasing the size of a system, the time needed to converge into the final
constant value increases. For instance, for the case of e = 0.03 and δ = 0.09,
the air temperature reaches its final constant value in approximately 20 min
while for the case of e = 0.05 and δ = 0.15, it takes almost 4000 min to reach
its final constant temperature.

3. Since the air temperature is larger than the solid temperature, the direction of
heat transfer is from the air to the solid and the air temperature decreases as
time increases. The slope of this decrease is high for small values of η2. During
this process, the solid humidity and the fluid temperature decrease.

4. The line of η2 = 1 in Figs. 2, 3, and 4 represents the interfacial temperature
similar to the line of η1 = 1 in Figs. 5, 6, and 7. By increasing time, due to the
heat exerted by the air, the interfacial temperature increases slightly.

NOMENCLATURE

An, Bn, Cn coefficients in Eqs. (24), (25) and (26)
D effective diffusivity, m2/s
E thickness of solid space, m
Fn, Gn, Hn eigenfunctions in Eqs. (35), (36), and (37)
hfg latent heat of vaporization, J/kg
K thermal conductivity of air, W/(m⋅K)
Le Lewis number, = αs/D
P pressure, Pa
T temperature, K or oC
t time, s
x, y1, y2 coordinate directions, m

Greek symbols
α thermal diffusivity, m2/s
αn, βn, γn eigenvalues in Eqs. (24), (25) and (26)
ρ density, kg dry air/m3

430



δ thickness of fluid space, m
τ normalized time
η normalized coordinate
θ normalized temperature
ω humidity of solid, kg/kg dry air
ϖ normalized humidity
λ1, λ2, λ3, λ4 constant parameters

Subscripts
a air (fluid)
s solid
e equilibrium condition
oa initial condition of fluid
os initial condition of solid
sat saturated condition
int interface condition.
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